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Event correlation between aftershocks in the coherent noise model is studied by making use of natural time,
which has recently been introduced in complex time-series analysis. It is found that the aging phenomenon and
the associated scaling property discovered in the observed seismic data are well reproduced by the model. It is
also found that the scaling function is given by theq-exponential function appearing in nonextensive statistical
mechanics, showing power-law decay of event correlation in natural time.
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In recent years, there has been an increasing interest in
extended dynamical systems exhibiting avalanches of activ-
ity, whose size distribution is scale free. Examples of such
systems are earthquakes[1], rice piles[2], extinction in bi-
ology [3], evolving complex networks[4], and so on. Up to
now, there is no unique and unified theory for such systems,
but one of the candidates may be the notion of self-organized
criticality (SOC) [5]. A key feature common in SOC models
is that the whole system is under the influence of a small
driving force that acts locally. These systems evolve towards
a critical stationary state having no characteristic spatiotem-
poral scales without fine-tuning parameters. Two extensively
studied examples of such extended driven dynamical systems
are the Olami-Feder-Christensen model for earthquakes[6]
and the Bak-Sneppen model for biological evolution[7], al-
though their inconsistent behaviors are still in debate(see,
for example, Refs.[8–10] and Ref.[11], respectively).

On the other hand, there exists another kind of simple and
robust mechanism producing scale-free behavior in the ab-
sence of criticality. An important example is the coherent
noise model[12], which we shall study here. The coherent
noise model has been introduced to describe large-scale
events in evolution. It is based on the notion of external
stress coherently imposed on all agents of the system under
consideration. Since this model does not contain any direct
interaction among agents, it does not exhibit criticality. Nev-
ertheless, it yields a power-law distribution of event(i.e.,
avalanche) sizes, which is defined by the number of agents
that change their states at each time step. The model allows
existence of aftershocks. This is a direct consequence of the
fact that, in the coherent noise model, the probability of a
large event to occur is increased immediately after a previous
large event.

The coherent noise model is defined in a rather simple
manner. Consider a system, which consists ofN agents. Each
agent i has a thresholdxi against external stressh. The
threshold levels are chosen at random due to some probabil-
ity distribution pthreshsxd. The external stress is also chosen

randomly due to another distributionpstressshd. An agent be-
comes eliminated if it is subjected to the stressh exceeding
the threshold for the agent. In practice, dynamics of the
model can be summarized as the following three steps:(i) at
each time step, a random stressh is generated frompstressshd
and all the agents withxi øh become eliminated and are
replaced by new agents with new thresholds drawn from
pthreshsxd, (ii ) a small fractionf of the N agents should be
chosen at random and given new thresholds, and then(iii ) go
back to(i) for the next time step. Here,(ii ) corresponds to the
probability for the f fraction of the whole agents of under-
going spontaneous transition. This is necessary for prevent-
ing the model from grinding to a halt(see, e.g., Ref.[13] for
details).

Here, we wish to note that this is a mean field model and
no geometric configuration space is introduced explicitly. In
spite of this fact, the model can describe some essential fea-
tures of seismic activity characterized by the power laws
[13,14], e.g., the Gutenberg-Richter law[15] for the relation
between frequency of events and magnitude and the Omori
law [16] for the temporal decay pattern of aftershocks. In this
respect, the variablexi could represent the threshold for
movement of a fault(or a point in a fault), h be regarded as
nondeterministic external stress acting on faults, and the
fraction f be responsible for slow plastic deformation caused
by tectonic movement of a crust. We also notice that, as
already mentioned, the model includes no interactions be-
tween neighboring parts of a faults.(This, however, never
means that there are no fault-fault interactions in real sys-
tems. It is interesting to see how both Gutenberg-Richter law
and the Omori law can be realized without interactions.)
Now, our primary purpose here is to examine if this model
can also describe a feature of event-event correlation of
earthquakes, which has recently been discovered by the
analysis of the real seismic data[17].

In particular, the Omori law, which is of relevance to our
subsequent discussion, states that the rate of aftershocksr
after a mainshock att=0 obeys

r , t−t. s1d

Empirically, the exponentt takes a value between 0.6 and
1.5. This describes the slow power-law decay, and each of
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the relevant parts of the seismic time series is nonstationary.
Such a time interval is referred to as the Omori regime.

Quite recently, the physical properties of correlation in the
seismic time series have been studied in Ref.[17] based on
analysis of the observed seismic data. It was shown that the
aging phenomenon occurs inside the Omori regime but it
disappears outside. The definite scaling property has also
been identified for the event correlation function. These re-
sults show that there are aspects common in mechanism of
aftershocks and glassy dynamics.

A point of crucial importance regarding the aging phe-
nomenon of earthquake aftershocks is that, unlike ordinary
discussions of the aging phenomenon, the two-point correla-
tion function is defined in the domain of “natural time”[18],
not conventional time. The concept of natural time is a kind
of an internal clockcounting the discrete event number. It
has successfully been applied to revealing physical essence
of complex time series such as seismic electric signals, ionic
current fluctuations in membrane channels, and so on[18].
The fact that natural time is more fundamental than conven-
tional continuous time is still empirical. In this respect, one
may recall that the concept of continuum is recognized
through continuous physical processes, whereas in the case
of earthquakes one is concerned with a series of discrete
events. However, clearly, more investigations are needed for
deeper understanding of natural time.

Here, we discuss the physical properties of the Omori
regime in the coherent noise model. We shall see that aging
and scaling discovered in the observed seismic data are well
reproduced by the model. The correlation function is found
to have the form of theq-exponential function(see below),
showing slow power-law decay. These results have also
striking similarities with those recently obtained for the non-
extensive Hamiltonian system of an infinite-range coupled

rotors in the course of nonequilibrium relaxation dynamics
[19] in conventional time, although the systems as well as
the chosen random variables are completely different from
each other.

We have carried out the numerical study of the aging
phenomenon in the coherent noise model with the exponen-
tial distribution for the external stress,

pstressshd = a−1 expS−
h

a
D sa . 0d, s2d

and the uniform distributionpthreshsxd s0øxø1d for the
threshold level. The results obtained are in order.

First of all, we present in Fig. 1 a typical subinterval of
the obtained time series of activity(or event size, which is
defined as the number of agents eliminated at a given time
step), where aftershocks are clearly identified. In Fig. 2, the
rate of the probability of finding aftershocks larger thans1
following the initial large event at the beginning of time is
plotted with respect to the elapsed time. The straight line
represents the Omori law, which allows us to identify the
Omori regime. We have ascertained that this result is insen-
sitive to the threshold values1.

To investigate the property of event correlation, following
the idea proposed in Ref.[17], we have employed as the
basic random variable the time of thenth aftershock with an
arbitrary avalanche sizetn, wheren is the aforementioned
natural time in the setting of our problem. The two-point
correlation function is given by

FIG. 1. A section of the time series of activity in the dimension-
less units. 5000 time steps are shown after the largest shock out of
the time series of 30 000 000 events. The aftershocks following the
mainshock at the beginning of time are clearly recognized.

FIG. 2. A histogram of the time distribution(i.e., the rate) of
90 000 aftershocks larger thans1=10 following the mainshock at
the beginning of time. The strength of the external stress in Eq.(2)
is a=0.001, and the fractionf =5310−6 of N=200 000 agents is
chosen at random. It obeys a power law in Eq.(1) with t.1. All
quantities are dimensionless.
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Csn + nw,nwd =
ktn+nw

tnw
l − ktn+nw

lktnw
l

ssn+nw

2 snw

2 d1/2 , s3d

where the average is understood as the ensemble average
taken in association with a number of numerical runs, and
the variances in the denominator are given by,sm

2 =ktm
2 l

−ktml2. It is noticed that this averaging procedure is different
from that in Ref.[17], in which the time average is used.
Since the Omori regime is nonstationary, the correlation
function depends not only onn but also onnw. In Fig. 3, we
present the plots ofC sn+nw,nwd for several values of “natu-
ral waiting time”nw. There, the clear aging phenomenon can
be appreciated. Furthermore, as shown in Fig. 4, collapse of
these curves can nicely be realized, following the scaling
relation

Csn + nw,nwd = C̃S n

nw
aD , s4d

where C̃ is a scaling function anda is numerically a
.1.05. This form of scaling is remarkably similar to the one
presented in Ref.[17], where the observed seismic data are
employed.

To find the form of the scaling function, we have exam-
ined the semi-q-log plot of the curve in Fig. 4, where the
q-logarithmic function is defined by

lnqsxd =
x1−q − 1

1 − q
sx . 0d, s5d

which is the inverse function of theq-exponential function

eqsxd = f1 + s1 − qdxg+
1/s1−qd s6d

with the notationfzg+=maxh0,zj. [In the limit q→1, lnqsxd
andeqsxd converge to the ordinary logarithmic and exponen-
tial functions, respectively.] This pair of functions is known
to play a central role in nonextensive statistical mechanics
[20,21]. The connection between theq-exponential scaling

FIG. 3. Dependence of the event correlation functionCsn
+nw,nwd of the aftershocks larger thans1=1 on natural time. The
strength of the external stress in Eq.(2) is a=0.2 and the fraction
f =0.01 of N=10 000 agents is chosen at random. The ensemble
average over 120 000 realizations is performed. The values of natu-
ral waiting time arenw=250, 500, 1000, 2000, and 5000 from bot-
tom to top. All quantities are dimensionless.

FIG. 5. The semi-q-log plot of the collapsed curve withnw

=1000, 2000, and 5000 in Fig. 4. The straight line shows that the
scaling function is of theq-exponential form withq.2.98.

FIG. 4. Data collapse for the correlation functionCsn+nw,nwd
shown in Fig. 3. The gray solid line corresponds to
eqs−0.7n/nw

1.05d with q.2.98.

AGING IN COHERENT NOISE MODELS AND NATURAL TIME PHYSICAL REVIEW E70, 056120(2004)

056120-3



function and nonextensive statistical mechanics is not clear,
however:C̃ is a correlation function and not a distribution
function. The straight line of the correlation function in the
semi-q-log plot shown in Fig. 5 indicates that the scaling
function is given by theq-exponential. Therefore event cor-
relation decays slowly, following a power law. This reminds
us of the recent discussion[19] about the nonextensive
Hamiltonian system in the course of nonequilibrium relax-
ation, though the time variable employed there is the conven-
tional one.

In conclusion, we have studied the physical properties of
event correlation in the Omori regime of aftershocks in the

coherent noise model. We have found that aging and scaling
in natural time discovered in the observed seismic data can
be reproduced remarkably well by this model. We have also
found that the scaling function is given by theq-exponential
function, and thus event correlation decays according to a
power law.
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